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Abstract 1. Introduction
We consider a distributed detection system consisting Distributed sensor systems consist of a number of sen-

of a set of sensors §={85,,S2, * * * .S, } and a set of objects  sors that cooperate, in a distributed manner, to achieve an |
0={0,,04, - .,0,). There are information constraints objective based on the outputs of all sensors [21,22]. It has ‘
on the system given by a relation RgSXO such that  been realized by many researchers that there arc Iimilntioni/
(5;,0;)€R if and only if S; is capable of detecting O;.  on the capabilities of a single sensor systems in a numbe
mEach (S,,O;)eR is assigned a confidence factor (a positive of application- arcas. Also, in several real-life systems,
real number) which is either explicitly given or can be  multiple sensors are a part of the design requirement.
efficiently computed. Given that a subset of sensors have  Often, the sensors are distributed, either geographically or
detected obstacles, the detection problem is to identify a  functionally; thus the information obtained by the sensors
subset HcO that has the maximum confidence value. We  has to be suitably coordinated, and a consolidated conclu-
consider the computational complexity of the detection  sion has to be distilled from the sensor data. The design,
problem, which depends on the nature of the confidence implementation and computational issues in multiple sensor
factor and the information constraints. Conscquently, this ~ Systems are considerably more challenging than their coun-
problem exhibits a myriad of complexity levels:. ranging terparts in single sensor systems, for the issues due to the
from a worst-case exponential (in #) lower bound in a gen- distributed information processing are seemingly absent in
eral case to an O (m-+n) time solvability. We show that the the latter. The literature on distributed sensor systems is
following simple versions of detection problem are compu-  extensive [2,9,10,20]; sce [7] and references therein for
tationally intractable: (a) deterministic formulation, where ~ some recent works. ~Comprehensive treatments on
confidence factors are either O or 1; (b) uniform formula-  specialized topics such as spatial reasoning [8], sensor
tion where (S;,0;)€R, for all S;eS, 0;€0; (c) decompos-  fusion in intelligent systems [11] also exist.
able systems under multiplication operation. We then show We consider a distributed detection system consisting
that the following versions are solvable in polynomial (in  of a set of sensors $=(S,,5,,** .S, ) and a set of objects
n) time: (a) single object detection; (b) probabilistically  0={0,,0,,--:,0,). The information constraints of the
ind?qendent detection; .(c) decon?pcfsablc systems under  system are given by a relation RcSxO such that
addm\./c and non-fractional multiplicative mcasures; (d) (51,0)eR if and only if §; is capable of detecting 0.
matroid systems. The sensor S; produces an output of 1 when any object 0},
such that (S‘.Oj)eR. has been sensed by S;. Each
(5:,0;)eR is assigned a confidence factor which could bé a
numerical value, or a value that can be computed. In gen-
eral, the confidence factor is expressed as a function
£:29%255R*, where R* is the sct of non-negative rcal
numbers. Here f(A,B), for AcO,BCS, denotes the
confidence that A is the sct of objects in the work space |
when the sensors B produce outputs of 1. lLet |
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mSen(Oj)=[S,-|(S,-,Oj)eR} and Det(S;)=(0;(5;,0;)eR ).

Given that a subset of sensors DS have detected obsta-

cles (i.e. produced an output of 1), the detection problem is

to identify the subset of objects HgO such that

fwD )=;uaz:‘<' [ (A,D). Under the assumption that f(A,D)
€

can be computed in O (14 I+ID l) time, we are interested in
the complexity of computing /.

The simple detection systems of Rao [14] where the
detection is deterministic, are special cascs of the present
formulation. On the other hand, the probabilistic formula-
tion of Demirbas [5] is a special case when Sen (Oj)=S.
and the confidence factor is the probability measure and the
events (appearances of objects in the workspace) are proba-
bilistically independent. In terms of computational com-
plexity, we show that this is a particularly easy case in that
the detection can be carried out in O(mn) time. Distri-
buted dctection problems bascd on probabilistic formula-
tions have been extensively studied [3.5,17-19]. Note that
in our formulation f£(.) has lesser structure than a
probability measure, and as a special case can correspond
to a probability measure.

We consider the computational complexity of the
detection problem; the most deciding factors are the type of
formation constraints and the nature of confidence factor.
The detection problem exhibits a myriad of complexity lev-
els: ranging from a worst-case exponential (in n) to an
O (mn) time solvability. At one extreme, this problem has
an exponential (in n) lower bound for the computational
complexity; it is particularly interesting to note that it
seems to be computationally harder than NP-complete prob-
lems. At the other extreme, it becomes solvable in O (mn)
time under additive measure. Some interesting subclasses,
based on Bayesian type (more specifically based on com-
puting a posteriori probabilities) methods, fall out as part of
our analysis. We are unware of systematic complexity stu-
dies of these classes of problems; we show that these prob-
lems are polynomial time solvable under probabilistically
independent events, but, become NP-hard in a general case.
We also introduce the notion of f -decomposable systems,
where f(A,B) can be computed using divide-and-conquer
algorithms. These systems contain some interesting subc-
lasses; in particular, the matroid systems support greedy
algorithms.

We show that the following simple versions of detec-
tion problem are computationally intractable (i.e. the optim-
ization problems are NP-hard and the decision versions are
NP-complete):

h. (a) deterministic formulation, where the f(.) is inter-
preted as a probability measure on 22, and all detec-
tion probabilities are either 0 or 1;

(b) completely constrained system, where Sen(0;)=S
for all 0;€0.

(c) f -decomposable systems under a product operation
(details are given in Section 2.2).

Note that for practical purposes, the NP-Complete problems
are oo time-consuming to be useful for large inputs [6] (at
the present time, it is not known whether these problems
are solvable in polynomial time or not). The case (b) also
corresponds to the casc of Bayesian detection when the
events are not guaranteed to be independent. We then
show that the following versions are solvable in polynomial
(in 1) time:

(a) single object detection;

(b) probabilistically independent detection;

(c) decomposable systems under additive measures and
mudtiplicative measures where f (A)21 for all Ae29:
(d) systems whe're the family of unions of Sen(O;)
forms a matroid.

Note that (b) corresponds to the Bayesian detection
where the events are considered independent.

The organization of this paper is as follows: In Section
2.1, we consider the subclasses of the detection problem
which are NP-complete. The f -decomposable systems that
enable efficient computation of confidence factors using
divide-and-conquer algorithms, are discussed in Section 2.2.
In Section 2.3, we consider the cases where the detection
problem is solvable in polynomial time.

2. Complexity of Detection Problem

A straight forward solution to the detection problem
can be obtained by explicitly computing (f(4,D)}, =20
This results in a prohibitively large complexity of
O@"(m+n)). In its general formulation the detection
problem is tantamount to that of picking the largest of 2°
real-numbers, and hence has a lower bound of complexity
of Q(2"). However the properties of f and R can be util-
ized to expedite the computation.

Consider the set of all unions of Sen (0 ;)s given by
E=(Sen (0; YSen O ) -+ - USen (0,
iyttt ipa€flin] kel 1n ])

and note that De&. For A€k, let I'(A) denote the family
of subsets of O such that each subset is related (under R)
to the same subset A of S under the information con-
straints, i.e.
TA)={BIBcO, (ySen(a)=A).
ce8

Now constrain the system such that f(B,A)=f (B,A) for
B,,B,eT(A), i.e. for each set of sensors with output 1, all
the sets of potential objects will have the same confidence,
and the choice of any such set of objects constitutes a solu-
tion to the detection problem. Consider the family




~Y=(T'(A)},ee. Thus in this case we have ;naz)gf (A,D)
. €
=ﬂay (A D). If I¥l2c2" for some constant ¢>0, the

detection problem has a lower bound of ©(2"). However,
if IWl<cp (n), for some constant ¢ 20 and some polynomial
p(n), the above argument cannot be applicd to show an
exponential lower bound. We show that this problem is
NP-hard and contains several subproblems which are NP-
complete. Thus, this problem is still computationally
intractable.

2.1, Computationally Intractable Classes

We consider the class of NP-Complete problems that
can be solved in polynomial time on a non-deterministic
Turing machine [6]). Informally, in these problems it can
be verificd if A=H for any HibO and for any AcO in
polynomial time, but there are exponential number of
choices for A. We now show that the nature of f and R
are orthogonal in causing NP-Completeness in certain subc-
lasses of the detection problem; in particular we show the
nature of either f or R could be damaging enough to make
this problem intractable.

Mutltiple Object Detection:

Consider the case where detection is deterministic in
(" “at confidehce function f(A,D)=1 if ySen(a)=D and

acA

f(AD)=0 otherwisc. Thus ;nazag f(A.D) corresponds to
€

finding if there exists a subset A O that satisfies the infor-
mation constraints imposed by R. This problem is called
the multiple object detection problem and is shown to be
NP-Complete by Rao [14] by reducing the set cover prob-
lem to this problem. Thus the nature of information con-
straints, R, alone is sufficient to make this problem NP-
Complete. ’

Most Plausible Hypothesis:

At the other extreme, consider a fully constrained sys-
tem such that Sen(0;)=S for all 0;e0, and let f()
correspond to probability measure on 29, In this case
computation of H corresponds to computing a most plausi-
ble explanation under the set cover model. This problem
has been shown to be NP-hard by Reggia et al [15). Thus
trivializing the nature of the information constraints, R, in
the detection problem does not make it any easier computa-
tionally. Notice that in this casc I'VI=1, but the detection
problem is computationally intractable; thus, a polynomial
bound on I¥| does not make this problem solvable in poly-
nomial time.

2.2. f -Decomposable Systems

‘We now introduce the notion of f -decomposable sys-
tems, where f(.) values can be computed using divide-
and-conquer algorithms (see [1] for details on divide-and-

conquer algorithms). We say that a multiple sensor system
is f-decomposable if there exists an operator O such that
for every A, BcO, f(AUB,D)=LXf(A,D),f (B,D)), and
O is computable in O (A 1+IBI+ID 1) time. Now notice
that for any AgO, f(AD) can be computed in
O (lA llog(lA 1)+1D llog(lA 1)) by using a straight-forward
divide-and-conquer algorithm:

(a) divide A into two sets A; and A,;

(b) recursively compute f(A,D) and f(A,.D);

(c) compute (f (A4,,D)f (A2,.D));
The time complexity of this algorithm will be given by
T(ALID )=2T (1A 12,I1D 1)+0 (IA 1+ID ), which yields the
desired complexity~ of O (lA Hog(lA I)+1D llog(lA 1)). This
problem will still have Q(2%) lower bound if I\¥I2c 2" for
some ¢>0. Now the question is the complexity of the
detection problem for the case IW!| is polynomially
bounded. Note that this problem subsumes the multiple
object recognition if R is unconstrained.

Consider the special case of a fully constrained system
where [J corresponds to multiplication of integers and f(.)
is integer valued. We pose a decision version of the detec-
tion problem as follows: Given R and a positive integer b,
is there H GO such that f (H ,D)=b 7 This problem can be
shown to be NP-complete by establishing a polynomial
time reduction Trom a well-known problem called the sub-
set product problem, which is stated as follows [6]. Given
a finite set A, size s(a)eZ* for each aeA, positive integer
b, is there s subset A'cA such that the product of the sizes
of the elements in A’ is exactly b ? If is direct to see a
reduction of this problem to the above version of the detec-
tion problem by identifying f (.) with the size function s (.).

2.3. Polynomial-Time Solvable Classes

Consider the single object case, where no more than
one object is present in the region monitored by the sen-
sors. In this case, we compute f({0;},D) for each 0;€0
and pick the object with highest f(.) value. This method
has been used by Demirbas [4] in the special case where
f(.) corresponds to the a posteriori probability computed
from known a priori probabilities. The time complexity of
this method is O(nm), and the same algorithm can be
cmployed when it is given that no morc than a constant
number of objects could be present in the workspace.

Now consider a completcly constrained case where f(.)
corresponds to the probability measures and the event of
any obstacle being present in the workspace is independent
of any other being present. Note that we allow multiple
objects to be present in the workspace. Now we have
fAWBDY=fAD)BLD), where ABeO, where
f(X.,D) is the probability that the objects X O are prescnt
in the workspace. In this case it is easy to sce that
f (AuB D )smin(f (A,D)Sf (B,D)) since each f(.) value is




N fraction. Thus we have maxf (4,D) =maxf({0;}.D).
Ae2® 0,€0

hmatroid bhsed

m

The latter can be computed in a strai'ght-forward manner in
O (nm) time. In other words, this problem reduces to that
of single object detection.

Now consider f-decomposable systems where the
operation [ corresponds to addition on rcal numbers. In
this case it is easy to see nggf (AD) =f(0,D), iec.

H=0. Similar result applies when O is multiplication and
f(A)21 for every A&29; but, the problem becomes com-
putationally intractable if no constraints arc placed on
f(A)s. Also, the above discussion holds when [ could be
dynamically switched between the addition and multiplica-
tion operations.

We now state a definition of a matroid [12]. A subset
system (E,A) is a finite set £ together with a collection A
of subsets of E closed under inclusion, ie., if A€A and
A'CA, then A'eA. The elements of A arc called indepen-
dent. The combinatorial optimization problem associated
with (E A) is the following: Given w(e)20 for each c€A,
find an independent subset that has the largest possible total
weight. Matroids have special structure such that a greedy
algorithm will yield a solution for the combinatorial optimi-
zation problem. Sece [12] for a detailed trcatment on
algorithms. Now consider a f-
decomposable system such that the subset system (§ Lisa
matroid and the O] of the decomposable system is addition.
The detection problem in this case can be solved as fol-
lows. We first compute f((0;).Sen(0;)) for each 0.
Then we use the following greedy algorithm to compute //:

begin
I =0H=¢C :=0;
while (I#D) do
begin
let O, eC such that ' ‘
£ ({0, ).Sen(0,)) = gng ({0;),Sen (0;));

“if ({USen(0,)<D ) then
begin
1:=1'Sen(Oy);
H :=HU{0k I
end
else
C=C-(0;};
end; ‘
output /1
end

The comectness of this method follows by straight-
forward methods  [12). The computation  of
£{0;),Sen(0;)) for each 0;, has a time complexity of
O(s). The complexity of above procedure is O (ns) since

there are n ilerations and each iteration can be carried out
in O (s) time. )

3. Conclusions

We consider a distributed detection system consisting
of a set of sensors $=(5.55, * * * .S, ) and a set of objects
0={0,,0,---,0,). There arc information constraints

on the system given by a relation RgSX0 such that
(5:,0;)eR if and only if S; is capable of dctecting O;.
Each (S;,0;)eR is assigned a confidence (a positive real
number) which is cither explicitly given or can be com-
puted. Given that a subset of sensors have detected obsta-
cles, the detection groblem is to identify a subset YO
that has the maximum confidence value. We consider the
computational complexity of the detection problem, which
depends on the nature of the confidence and the informa-
tion constraints. Consequently, this problem exhibits a
myriad of complexity levels - from a worst-case exponen-
tial (in n) lower bound in a general case to an O(m+n)
time solvability. We show that the following simple ver-
sions of detection problem are computationally intractable:
(a) deterministic formulation, where confidence factors are
either 0 or 1; (b) uniform formulation where (S,-.Oj)eR.
for all S;eS, 0;€0; (c) decomposable systems under mul-
tiplication operation. We then show that the following ver-
sions are solvable in polynomial (in n) time: (a) single
object detection; (b) probabilistically independent detection;
(c) decomposable systems under additive and non-fractional
multiplicative measures; (d) matroid systems.

Our study is a preliminary cffort to exhibit the richness
of the computational complexities of various versions of the
detection problem. We feel that we barcly scratched the
surface of this fascinating problem which seems to embody
many challenges. Some of the future investigations can be
focussed in identifying practical and casily solvable ver-
sions, designing approximation algorithms for the NP-hard
versions, and considering the cases where computational
complexity of f (A,D) is much higher than O (A D).
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